Besarenergi potensial pegas dapat dihitung dengan rumus : atau Hubungan antara gaya dan pertambahan panjang dapat digambarkan dalam grafik sebagai berikut : Susunan Pegas . a. Susunan Seri intinya penggabungan secara seri dan paralel mempunyai rumus yang berbeda sehingga tidak mungkin dikerjakan bersama-sama, di dalam rangkaian paralel c Selanjutnya kurangi keping-keping beban dan catat pula kedudukan jarum petunjuk. Semuanya dalam bentuk tabel yang sesuai. d) Timbanglah massa ember, tiap-tiap beban dan pegas (ingat nomor urut tiaptiap beban) 3. Menentukan tetapan pegas dan massa efektif pegas dengan cara dinamis a) Ember kosong digantung pada pegas, kemudian Perhitunganresistan total, arus, dan tegangan jatuh pada setiap beban pemanas dapat dilakukan dengan menerapkan Hukum Ohm sebagai berikut: Gambar 3.38 Rangkaian Parallel 2 Resistor. Cara menghitung resistan total: Langkah 1: Gunakan rumus. Langkah 2: Substitusikan nilai resistansi masing-masing resistor. Langkah 3: Samakan penyebutnya dan Kemudian hukum ini berkembang menjadi hukum untuk susunan seri dan susunan paralel dengan bunyi: Tentukan gaya yang diberikan pada pegas tersebut! Jawaban: Menggunakan rumus F = – k . Δx. Maka diketahui bahwa: k : 200 N/m. Δ x : 0,5 m. Maka sesuai rumus berarti F = 200 N/m. 0,5 m 100 N. Susunanpegas dapat diganti dengan sebuah pegas pengganti. Berikut hal-hal yang berkaitan dengan pegas pengganti dari susunan pegas seri dan paralel. a. Susunan Seri Untuk memudahkan pembahasan, diambil pegas- pegas yang tetapan pegasnya sama. Rumus dasar yang digunakan adalah rumus modulus Young dan Hukum Hooke k = EA X . Jadi, tetapan surat at taubah ayat 128 129 latin dan artinya. Rumus Susunan Pegas Seri dan Paralel - Pegas merupakan benda elastis yang dapat menyimpan energi mekanis, yang mana pegas terbuat dari logam yang lentur seperti besi dan baja. Pegas biasa diterapkan sebagai peredam guncangan pada kendaraan seperti motor dan mobil yang mana biasa disebut dengan "per". Pada pegas terdapat nilai Konstanta Pegas yaitu nilai perbandingan antara gaya dan perubahan panjang pegas yang memiliki satuan Newton per Meter N/m. Dan pada artikel ini kita akan belajar mengenai Rumus Pengganti Pegas pada Susunan Pegas Seri dan Susunan Pegas Paralel yang disertai dengan Contoh Soal Pembahasan. Rumus Susunan Pegas Seri Dari sebuah pegas yang disusun secara seri kita dapat menghitung besar konstanta total pegas pada susunan pegas seri tersebut menggunakan Rumus Susunan Pegas Seri berikut Rumus Konstanta Pegas Seri Keteranganks = Jumlah konstanta pegas serik1 = konstanta pegas 1k2 = konstanta pegas 2k.. = konstanta pegas ke ... Mengapa pada susunan pegas seri besar konstanta pegas semakin mengecil? Hal tersebut karena pegas yang tersusun secara seri mengakibatkan gaya yang diterima oleh semua pegas. Sehingga besar pegas yang tidak terbagi menyebabkan konstanta pegas pengganti pada susunan seri bernilai lebih kecil. Rumus Susunan Pegas Paralel Susunan pegas paralel merupakan susunan pegas yang disusun secara berjajar sehingga terlihat seperti bercabang, berikut merupakan Rumus Susunan Pegas Paralel Rumus Konstanta Pegas Paralel Keterangankp = Jumlah konstanta pegas paralelk1 = konstanta pegas 1k2 = konstanta pegas 2 k.. = konstanta pegas ke ... Ketika pegas yang disusun secara paralel atau sejajar maka besar jumlah konstanta pegas penggati pada susunan paralel memiliki nilai konstanta pegas yang besar. Hal tersebut karena gaya yang diterima oleh pegas terbagi-bagi oleh pegas lain yang sejajar. Setelah belajar Rumus Susunan Pegas Seri dan Rumus Susunan Pegas Paralel mari kita menghitung dengan Contoh Soal Susunan Pegas Seri dan Contoh Soal Susunan Pegas Paralel yang diserta dengan Contoh Soal. Contoh Soal Susunan Pegas Seri 1. Hitunglah besar total konstanta pegas yang disusun secara seri berikut? Jawabdiketahuik1 = 45 N/mk2 = 45 N/mk3 = 90 N/m ditanya Besar pegas keseluruhan pada susunan seri pegas ks? PenyelesaianBesar Konstanta pegas keseluruhan pada susunan seri pegas tersebut dapat kita hitung menggunakan Rumus Pegas Seri. Jadi besar pegas pengganti susunan seri tersebut sebesar 18N/m. 2. Empat buah pegas identik yang masing-masing memiliki konstanta pegas sebesar 10 N/m. Tentukan besar konstanta pegas pengganti jika keempat pegas tersebut dirangkai secara Seri! Jawabdiketahuik1 = 10 N/mk2 = 10 N/mk3 = 10 N/mk4 = 10 N/m ditanya Besar pegas pengganti susunan seri pegas ks? PenyelesaianHitung besar konstanta pegas pengganti menggunakan Rumus Pegas Seri. Jadi besar pegas pengganti sebesar 2,5 N/m. Contoh Soal Susunan Pegas Paralel 1. Diketahui empat buah pegas identik yang masing - masing memiliki konstanta pegas sebesar 35N/m dirangkai secara paralel. Tentukan konstanta pegas pengganti pada susunan pegas paralel tersebut! Jawabdiketahuik1 = 35 N/mk2 = 35 N/mk3 = 35 N/mk4 = 35 N/m ditanya Besar pegas pengganti susunan paralel pegas kp? PenyelesaianHitung besar konstanta pegas susunan paralel dengan menjumlahkan masing-masing konstanta pegas penyusun. Jadi besar konstanta pegas pada susunan paralel tersebut sebesar 140 N/m. 2. Agar jumlah konstanta pegas pada susunan pegas paralel tersebut memiliki nilai konstanta pengganti pegas paralel sebesar 100N/m Berapakah konstanta pegas A pada susunan pegas paralel tersebut? Jawabdiketahuik1 = 35 N/mk2 = 47 N/mkp = 100 N/m ditanya Besar konstanta pegas 3 k3 ? PenyelesaianDengan mensubtitusikan nilai konstanta pegas yang diketahui ke dalam rumus pegas paralel kita dapat mencari nilai konstanta pegas pada pegas 3. Jadi besar konstanta pegas 3 k3 bernilai 18 N/m. Baca Juga Rumus dan Contoh Soal Konstanta Pegas Jika ada yang ingin ditanyakan terkait materi Rumus Susunan Pegas Seri dan Paralel dapat kalian tanyakan melalui kolom komentar. Jangan lupa bagikan terima kasih, Semoga bermanfaat. Gaya pegas adalah gaya pemulih akibat tarikan atau tekanan yang dilakukan gaya eksternal pada pegas. Apakah itu gaya pemulih, gaya eksternal, hukum hooke, k pegas yang disusun seri dan paralel, energi pegas, usaha pegas, perbedaan gaya pegas dan osilasi pegas? Mari, kita bahas bersama secara detail. Sebuah pegas dengan tingkat kekakuan k ditarik atau ditekan sehingga bergeser dari posisi setimbangnya atau menyimpang sebesar x. Tarikan atau tekanan dapat dilakukan pada pegas horisontal atau vertikal. Tarikan atau tekanan yang dilakukan tangan ini berperan sebagai gaya eksternal. Akibatnya, gaya pemulih muncul pada struktur pegas. Gaya ini memiliki arah yang selalu berlawanan dengan arah gaya eksternal. Berdasarkan pemaparan di atas, kita dapat menyebut gaya pegas sebagai gaya pemulih pegas. Disini, pegas seolah-olah ingin kembali ke posisi setimbangnya dan tidak ingin terusik oleh gaya eksternal. Kita juga dapat memunculkan sebuah gaya eksternal yang terukur, yaitu dengan memanfaatkan gaya berat gravitasi oleh beban yang digantung pada sebuah pegas vertikal. HUKUM HOOKE Gambar Persamaan Rumus Gaya Pegas Hukum Hooke dan Usaha Perubahan Energi Pegas-klik gambar untuk melihat lebih baik- Pada sebuah percobaan pegas, kita menemukan hubungan antara gaya pegas dan perubahan simpangan pegas akibat tarikan atau tekanan adalah berbanding lurus. Tanda sebanding dapat hilang dan berubah menjadi sama dengan, jika kita menambahkan sebuah konstanta k. k adalah konstanta pegas atau konstanta kekakuan. Tanda negatif hanya sebuah keterangan yang menandakan bahwa gaya pegas F berlawanan dengan gaya eksternal yang menyebabkan pegas menyimpang sebesar x. Dalam perhitungan, kita tidak perlu merepotkan tanda ini. Semakin besar nilai k, maka semakin besar nilai F gaya pemulih pegas karena benda semakin kaku. Nilai k berbanding terbalik dengan x. Jadi, benda yang sangat elastis akan memiliki nilai k yang kecil dibanding benda yang tidak terlalu elastis. Dari gambar kita dapat mengetahui salah satu pernyataan hukum hooke adalah besarnya gaya F sebanding dengan pertambahan panjang x. Pernyataan lain hukum Hooke juga dipaparkan pada subbab tegangan dan regangan elastisitas benda padat. Gaya F memang berbanding lurus dengan x, tetapi hal ini memiliki jangka waktu. Pada nilai x tertentu, benda akan kehilangan elastisitasnya karena mencapai batas lenturnya. Jika kita memaksakan untuk menambah terus nilai F, maka benda tersebut akan rusak, patah, atau putus. Benda akan sesuai dengan hukum hooke hanya sampai pada titik kritisnya. Setelah di atas titik kritis, hukum hooke F=kx tidak lagi berlaku. PERBEDAAN GAYA PEGAS DAN OSILASI PEGAS Anggap saja gaya pegas adalah pegas yang sedang diregangkan atau ditarik dengan gaya eksternal Feks dan muncul gaya pemulih F pada struktur pegas. Pegas diam dan tenang pada kondisi ini, dimana perubahan x nya tetap. Osilasi pegas disini berarti pegas berada dalam kedaan bergerak bolak-balik. Otomatis, nilai x pada pegas berubah-ubah. Gaya pemulih F pada nilai x yang berbeda, tentu akan berbeda. Jadi, gaya pemulih pegas pada pegas yang berosilasi akan berubah-ubah nilainya. PEGAS YANG DISUSUN SERI DAN PARALEL Pada beberapa kasus, pegas dapat disusun seri ataupun parallel dengan tujuan tertentu. Kita dapat menghitung nilai k total untuk pegas yang disusun ini dengan nilai k yang ekuivalen dengannya. Anggap saja, kita akan menyederhanakan pegas ini menjadi satu, sehingga kita perlu nilai k total. Gambar Persamaan Rumus Pegas Seri dan Pegas Paralel dan Asal Persamaan Rumus-nya-klik gambar untuk melihat lebih baik- ENERGI PADA PEGAS YANG DITARIK ATAU DITEKAN Apakah pegas memiliki energi saat ia teregang atau tertekan? Tentu, energi yang dikandung pegas ini adalah energi potensial pegas, baik saat pegas horisontal ataupun vertikal. Kita akan pisahkan konsep energi potensial pegas ini dengan konsep energi potensial gravitasi mgh. Lantas, bagaimana dengan energi kinetik pegas? Kita akan mudah mengidentifikasi energi kinetik pegas saat pegas berosilasi. Jadi, kita tidak akan membahas energi kinetik pegas pada pegas yang sedang diam ini. Ingat! energi kinetik adalah energi yang dimiliki sistem karena kelajuannya. Persamaan rumus energi potensial pegas sedikit berbeda dengan persamaan energi potensial gravitasi mgh. Perhatikan persamaan x pada gambar Sehingga, usaha W yang dilakukan pegas = perubahan energi potensialnya. KESIMPULAN Hukum hooke menegaskan bahwa gaya pemulih pegas F berbanding lurus dengan pertambahan panjangnya x. Persamaan diturunkan dengan merubah tanda sebanding dengan sama dengan tetapi diberi besaran k sebagai gantinya. Saat pegas divariasi dengan susunan seri atau paralel, kita dapat menggantinya dengan satu pegas yang memiliki nilai k yang ekuivalen. Usaha yang dilakukan pegas pada kondisi ini = perubahan energi potensialnya. Sebagai catatan, F pada pegas yang berosilasi jelas berbeda dengan pegas yang stabil. RG Squad tahu apa itu resistor? Resistor adalah hambatan yang biasa digunakan pada rangkaian listrik seri dan paralel. Jadi, apa hubungan pegas dengan resistor? Hubungannya terletak pada kemiripan rumus pengganti hambatan atau pengganti konstanta pegas. Ah, banyak juga ya konsep dalam ilmu fisika! Eits, tenang dulu. Pembahasan artikel ini akan membantu RG Squad mengingat dua konsep yang berbeda dengan mudah. Rangkaian pegas dan resistor terdiri dari dua jenis, yaitu rangkaian seri dan pararel. Ketika resistor disusun seri, RG Squad bisa menghitung resistor pengganti dari rangkaian seri tersebut. Begitu juga ketika pegas disusun seri, RG Squad bisa menghitung konstanta pengganti dari rangkaian seri pegas. Nah, bagaimana cara menghitungnya? Konstanta pengganti seri pada pegas. Sumber Resistor pengganti seri Sumber sedangkan untuk resistor seri Rs = R1 + R2 + ….. Jika pegas dirangkai seri, gaya yang dialami masing-masing pegas sama dengan gaya tariknya, tetapi simpangannya berbeda. Jadi, syarat pegas disusun seri ialah F=F1=F2=… x=x1 + x2+… Keterangan ks = konstanta pengganti seri N/m Rs = resistor pengganti seri ohm F = gaya N x= simpangan pegas m Berbeda dengan perumusan rangkaian seri, rangkaian paralel pegas menghitung besar konstanta pengganti pegas dapat menggunakan rumus Sedangkan, penghitungan besar resistor pengganti untuk rangkaian resistor yang disusun secara paralel dapat digunakan rumus Resistor rangkaian paralel. Sumber Keterangan kp= konstanta paralel pegas N/m Rp= Resistor paralel ohm Syarat pegas disusun paralel ialah Simpangan masing masing pegas sama x=x1 =x2=… Gaya masing-masing pegas berbeda F=F1+F2+… Nah, untuk memudahkan mengingat dua konsep yang berbeda, RG Squad cukup mengingat bahwa mencari resistor pengganti selalu berkebalikan rumusnya dengan mencari konstanta pengganti pegas. Rumus konstanta pengganti pegas yang disusun paralel dapat digunakan untuk menghitung besar resistor pengganti yang disusun secara seri. Sedangkan, rumus konstanta pengganti pegas yang disusun secara seri dapat digunakan untuk menghitung besar resistor pengganti yang disusun secara paralel. Sederhana, bukan? RG Squad belum puas dengan penjelasan rangkaian listrik seri dan pararel di atas? Daftar sekarang yuk di Ruang Belajar! Ada banyak video pembelajaran beranimasi yang seru dan juga rangkumannya, lho. Pada postingan ini kita membahas contoh soal susunan pegas dan penyelesaiannya atau pembahasannya. Seperti kita ketahui 2 pegas atau lebih dapat disusun secara seri, paralel ataupun gabungan seri-paralel. Pegas yang disusun seri atau paralel akan menghasilkan satu konstanta yang disebut konstanta konstanta gabungan pegas susunan seri → 1ks = 1k1 + 1k2 + 1k3 + … + 1kn Rumus konstanta gabungan pegas susunan paralel → kp = k1 + k2 + k3 + … + knSelain rumus konstanta pegas, rumus lain yang mesti dikuasai agar bisa menyelesaikan soal-soal susunan pegas adalah rumus gaya pegas atau hukum Hooke. Hal ini karena antara susunan pegas dan hukum Hooke saling lebih jelasnya perhatikan contoh soal susunan pegas dan penyelesaiannya dibawah soal 1Diketahui 3 buah pegas disusun seri seperti gambar dibawah konstanta masing-masing pegas 600 N/m dan berat w = 6 N maka hitunglah pertambahan panjang masing-masing soalUntuk menjawab soal ini hitung terlebih dahulu konstanta gabungan pegas yaitu→ 1ks = 1k1 + 1k2 + 1k3 → 1ks = 1600 + 1600 + 1600 → 1ks = 1 + 1 + 1600 = 3600 → ks = 6003 = 200 N/mSelanjutnya kita hitung pertambahan panjang pegas dengan hukum Hooke yaitu→ Δx = Fks → Δx = 6200 = 0,03 mJadi pertambahan panjang pegas sebesar 0,03 m atau 3 soal 2Tiga buah pegas identik disusun seri seperti gambar dibawah ini. Jika berat beban w = 15 N dan menyebabkan sistem pegas bertambah panjang 5 cm, hitunglah konstanta masing-masing soalHitung terlebih dahulu konstanta gabungan ketiga pegas dengan menggunakan rumus hukum Hooke yaitu→ ks = FΔx = wΔx → ks = 150,05 = 300 N/ identik maka konstanta setiap pegas besarnya sama atau k1 = k2 = k3 = k sehingga diperoleh→ 1ks = 1k1 + 1k2 + 1k3 → 1ks = 1k + 1k + 1k = 3k → ks = k3 → k = 3 . ks = 3 . 300 = 900 N/mJadi konstanta masing-masing pegas adalah 900 N/ paralel pegasContoh soal 1Dua buah pegas identik disusun paralel seperti gambar dibawah massa beban 200 gram dan dua pegas bertambah panjang 1 cm, hitunglah kostanta masing-masing soalPada soal ini diketahui m = 200 gram = 0,2 kg, g = 10 m/s2 dan Δx = 1 cm = 0,001 m. Kemudian untuk menjawab soal ini hitung terlebih dahulu konstanta gabungan kedua pegas→ kp = FΔx = m . gΔx → kp = 0,2 . 100,001 = 2000 N/ identik maka konstanta kedua pegas sama sehingga→ k1 = k2 = k. → kp = k1 + k2 = 2k. → k = kp2 = 20002 = 1000 NJadi konstanta masing-masing pegas k = 1000 N/ soal 2Diketahui 3 buah pegas identik disusun seperti gambar dibawah w = 1,2 N dan sistem pegas mengalami pertambahan panjang 0,006 m, hitunglah konstanta masing-masing soalHitung terlebih dahulu konstanta gabungan ketiga pegas dengan rumus berikut→ kg = wΔx → kg = 1,20,006 = 200 N/m. Kemudian kita tentukan konstanta masing-masing pegas dengan cara→ kAB = kA + kB = k + k = 2k. → 1kg = 1kAB + 1kc → 1kg = 12k + 1k = 1 + 22k = 32k → k = 32 kg = 32 x 200 = 6002 = 300 N/mContoh soal 3Perhatikan gambar susunan 4 pegas identik dibawah konstanta masing-masing pegas 1600 N/m dan pertambahan panjang sistem pegas 5 cm, hitunglah berat beban soalHitung terlebih dahulu konstanta gabungan pegas dengan cara→ kp = k1 + k2 + k3 → kp = 1600 + 1600 + 1600 = 4800 N/m → 1kg = 1kp + 1k4 → 1kg = 14800 + 11600 = 1 + 34800 = 44800 → kg = 48004 = N/mJadi berat beban w = F = kg . Δx = . 0,05 = 60 soal 4Empat buah pegas masing-masing dengan konstanta c disusun secara paralel. Hitunglah konstanta gabungan 4 soalBerdasarkan rumus susunan paralel pegas kita peroleh kp = c + c + c + c = 4c.

rumus pegas seri dan paralel